Science Friday
Science Friday

Science Friday is a weekly science talk show, broadcast live over public radio stations nationwide. Each week, the show focuses on science topics that are in the news and tries to bring an educated, balanced discussion to bear on the scientific issues at hand. Panels of expert guests join host Ira Flatow, a veteran science journalist, to discuss science and to take questions from listeners during the call-in portion of the program.

Airs on:
FRI 11am-1pm
47 min

The End of Everything, Bright Fluorescence, Gene Editing a Squid. August 7, 2020, Part 2

When it comes to the eventual end of our universe, cosmologists have a few classic theories: the Big Crunch, where the universe reverses its expansion and contracts again, setting the stars themselves on fire in the process. Or the Big Rip, where the universe expands forever—but in a fundamentally unstable way that tears matter itself apart. Or it might be heat death, in which matter and energy become equally distributed in a cold, eventless soup. These theories have continued to evolve as we gain new understandings from particle accelerators and astronomical observations. As our understanding of fundamental physics advances, new ideas about the ending are joining the list. Take vacuum decay, a theory that’s been around since the 1970s, but which gained new support when CERN confirmed detection of the Higgs Boson particle. The nice thing about vacuum decay, writes cosmologist Katie Mack in her new book, The End of Everything: (Astrophysically Speaking), is that it could happen at any time, and would be almost instantaneous—painless, efficient. Mack joins Ira to talk about the diversity of universe-ending theories, and how cosmologists like her think about the big questions, like where the universe started, how it might end, and what happens after it does.  Over the years, researchers have created thousands of chemical dyes that fluoresce in every color of the rainbow—but there’s a catch. Most of those dyes fluoresce most brightly when they’re in a dilute liquid solution. Now, researchers say they’ve created what they call a “plug-and-play” approach to locking those dyes into a solid form, without dimming their light.   The new strategy uses a colorless, donut-shaped molecule called a cyanostar. When combined with fluorescent dye, cyanostar molecules insulate the dye molecules from each other, and allow them to pack closely together in an orderly checkerboard—resulting in brightly-fluorescing solid materials.  Amar Flood, a professor of chemistry at Indiana University, says the new materials can be around thirty times brighter than other materials on a per-volume basis, and the approach works for any number of off-the-shelf dyes—no tweaking required. Flood joins SciFri’s Charles Bergquist to discuss the work and possible applications for the new technology. Scientists at Woods Hole Marine Biological Laboratory recently thrilled the genetics world by announcing they’ve successfully knocked out a gene in squid for the first time.  “I’m like a kid in a candy store with how much opportunity there is now,” says Karen Crawford, one of the researchers and a biology professor at St. Mary’s College of Maryland. Crawford explains this modification has huge implications for the study of genetics: Squids’ big brains mean this work could hold the key to breakthroughs in research for human genetic diseases, like Huntington’s disease and cystic fibrosis. Joining Ira to talk about the news are Crawford and her co-lead on the research, Josh Rosenthal, a senior scientist at the Marine Biological Laboratory in Woods Hole, Massachusetts.
47 min

Biden Climate Plan, Boiling River. August 7, 2020, Part 1

Last month, former Vice President Joe Biden unveiled his plan for climate change—a sweeping $2 trillion dollar platform that aims to tighten standards for clean energy, decarbonize the electrical grid by 2035, and reach carbon neutrality for the whole country by 2050. Biden’s plan, like the Green New Deal, purports to create millions of jobs at a time when people are reeling financially from the pandemic—proposing employment opportunities including retrofitting buildings, converting electrical grids and vehicles, and otherwise transforming the country into an energy efficient, emissions-free economy. But are the foundations of this plan on solid scientific ground? Yes, say Ira’s guests, political scientist Leah Stokes and energy systems engineer Sally Benson. Stokes and Benson run through Biden’s proposals, explaining what’s ambitious, what’s pragmatic, and what people might show up to vote for. Deep in the largest rainforest of Latin America is the Peruvian Boiling River, a name earned from water that can reach 100°C—or about 212°F.  While the river is hot enough to cook any animal unfortunate enough to wind up in it, its microbes don’t mind. They can handle the heat—and their odd survival mechanisms might have medicinal value.  Joining Ira to talk about these tiny heat-seekers and the Peruvian Boiling River is Rosa Vásquez Espinoza, a Ph.D. candidate in chemical biology at the University of Michigan.  See photos and video of Rosa Vásquez Espinoza’s expedition to the Boiling River and learn more about her research on extreme microbes in a feature article on SciFri.  It’s been a busy week for science news. Cities are still grappling with COVID-19, and in New York City, previously the country’s largest coronavirus hotspot, health commissioner Oxiris Barbot has resigned. She cited Mayor Bill de Blasio’s handling of the pandemic as her reason for doing so, issuing a scathing statement on her way out the door. Barbot is just one of the many health officials around the country who have butted heads with the politicians that oversee them during the pandemic. And across the world, devastating explosions in Beirut, Lebanon have injured thousands and killed several dozen. As officials piece together why this happened, they’re pointing to a warehouse of ammonium nitrate as the source of the blasts.  Joining Ira to talk about these stories, and other science news of the week, is Sophie Bushwick, technology editor at Scientific American in New York, New York.
47 min

COVID In Prisons, How Sperm Swim. July 31, 2020, Part 2

As the COVID-19 pandemic has spread, it’s become clear certain populations are particularly at risk—including those serving sentences in prisons and jails. The virus has torn through correctional and detention centers across the U.S., with more than 78,000 incarcerated people testing positive for COVID-19 as of July 28, according to the Marshall Project’s data report.  “Prisons are just the worst possible environment if we are trying to reduce infectious disease,” Zinzi Bailey told SciFri earlier this week on the phone. She is a social epidemiologist at the University of Miami and a principal investigator of the COVID Prison Project, which tracks and analyzes coronavirus data in U.S. correctional facilities. “A lot of people would argue that the conditions are inhumane.” Disease outbreaks have swept through prisons in the past, often due to poor living conditions and limited access to proper health care, Bailey explains. Hepatitis, tuberculosis, and HIV are just a few of the diseases that have historically hit inmates hard. Now, the incarcerated, correctional officers, and staff members are battling COVID-19. Detention centers are notoriously overcrowded, making it easy for the virus to spread. The cramped, dormitory-style living conditions, shared spaces, and infrequent sanitation can contribute to increased risk of exposure and infection. In Ohio, for example, the prison system is at 130% capacity, making it “basically impossible” to socially distance inmates, Paige Pfleger, health reporter at WOSU in Columbus, Ohio, told SciFri on the phone last week.  Yet incarcerated people living in these conditions have little to no access to protection. Some have resorted to making face coverings out of shirts and boxer shorts. At the beginning of the pandemic, some correctional officers in Arizona prisons were not allowed to wear masks.  “Correctional officers were originally told that if they did wear masks, it would scare inmates—that they’re going to think, ‘Oh my gosh, this is a really serious virus,’” says Jimmy Jenkins, senior field correspondent and criminal justice reporter at KJZZ in Phoenix, Arizona. “I got letters from all these inmates saying they were scared of dying.” Access to testing among the incarcerated population has also varied state to state. Ohio conducted mass tests in some of the facilities in April, but have been unable to retest in order to track community spread, says Pfleger. In Arizona, inmates are reporting that “only the sickest of the sick are actually getting tested,” says Jenkins. Coronavirus outbreaks in prisons often spill over into the rest of the community. Contract workers and correctional officers coming in and out of detention facilities can cause further spread of the virus. This is concerning, particularly in Black, Latino, and Native American communities with an already increased risk of contracting the disease. “We believe that there’s going to be a connection between the communities of color that are around prisons, and the prisons themselves,” says John Eason, an assistant professor of sociology at the University of Wisconsin-Madison, who spoke to Science Friday over the phone earlier in the week. In an ongoing study with the Dane County Criminal Justice Council, “we’re going to be able to parse that out to see the role of corrections officers.” He suspects they may find officers are “basically incubators—or vectors between communities and the prisons that they work in.” The inmates are like “guinea pigs,” says Zinzi Bailey. “It’s like an experiment, and we are letting it run its course in these prisons,” she says—but one without an ethical review. “What is being made clear through this pandemic is the United States’ reliance on incarceration makes us more vulnerable to pandemics like this.” Paige Pfleger and Jimmy Jenkins tell us more about how their states are responding to coronavirus outbreaks in prisons. Then, social epidemiologist Zinzi Bailey provides a closer look at the trends in American prisons—and what COVID-19 is revealing about public health in these systems.  We didn’t always understand the basic science of where babies come from. Theories abounded, but until the 19th century, there was little understanding of how exactly pregnancy occurred, or even how much each parent actually contributed to the reproductive process.  In 1677, a Dutch scientist named Antonie van Leeuwenhoek peered into a microscope and observed, for the first time in recorded history, the side-to-side swimming of tiny sperm cells. He wrote they looked like “an eel swimming in water.” At the time, van Leeuwenhoek thought those cells were tiny worms—maybe even parasites. It took several hundred more years before scientists understood even the crude theory of reproduction as most of us are taught: That a sperm and an egg cell combine inside the fallopian tubes. But, as it turns out, even the movement of sperm first described by van Leeuwenhoek—and corroborated ever since in two-dimensional, overhead microscope views—might be wrong. A team of scientists writing in the journal Science Advances this week report finally viewing sperm movement in three dimensions. With the help of 3D microscopy and high-speed photography, they describe a “wonky,” lopsided swimming motion that would keep sperm swimming in circles—if they didn’t also have a corkscrew-like spin that let them move forward “like playful otters.” Hermes Gadelha, a senior lecturer in mathematical and data modeling at the University of Bristol in the United Kingdom, talks to John Dankosky about the complexity and beauty of these swimming cells, and why understanding their movement better could lead to breakthroughs in infertility treatment—or even other kinds of medicine.
47 min

Science In Space, Sports and COVID, Science Diction. July 31, 2020, Part 1

Astronauts have conducted all sorts of experiments in the International Space Station—from observations of microgravity on the human to body to growing space lettuce. But recently, cosmonauts bioengineered human cartilage cells into 3D structures aboard the station, using a device that utilizes magnetic levitation.  The results were recently published in the journal Science Advances. Electrical engineer Utkan Demirci and stem cell biologist Alysson Muotri what removing gravity can reveal about basic biological questions, and how you design experiments to run in space.  Major League Baseball’s season opened to great fanfare last week, amid the pandemic. But 18 players and staff of the Miami Marlins have already tested positive for COVID-19—forcing the team to pause their season until at least next week. Meanwhile, the NBA has quarantined their entire roster in a bubble in the Magic Kingdom in Florida.  Sports reporter Ben Cohen and epidemiologist Zachary Binney talk about the strategies and effectiveness of different leagues as competitive sports attempt to make a COVID-19 comeback.  Ketchup has long been central to American culture. We use it in hot dogs, burgers, fries—and the list goes on. But have you ever wondered why we even call it ‘ketchup,’ or where the condiment came from?   It turns out there are many words related to food—like restaurant, umami, and “rocky road”—that have an interesting science backstory. To trace the origins of these words, Science Friday’s word nerd Johanna Mayer joins John Dankosky to talk about the origins of the word ketchup, and the new season of her podcast ‘Science Diction.’ As American pharmaceutical company Moderna’s COVID-19 vaccine candidate entered Phase 3 of human clinical trials this week—an important step in what is still an early phase of its development—Russia claims a vaccine of its own will be approved for use as soon as mid-August, prompting safety concerns. But questions about vaccines extend far beyond who is first. What happens next for the people around the world waiting for protection from the pandemic? As Science Magazine reports, rich nations have placed hundreds of millions of advance orders for successful vaccines, while poorer countries worry that there will be little left for everyone else. Maggie Koerth, senior science reporter for FiveThirtyEight, discusses this story and more news from the week, including the discovery of 100-million-year-old microbes living beneath the ocean floor.
19 min

SciFri Extra: The Origin Of The Word 'Ketchup'

Science Diction is back! This time around, the team is investigating the science, language, and history of food. First up: Digging into America's favorite condiment, ketchup! At the turn of the 20th century, 12 young men sat in the basement of the Department of Agriculture, eating meals with a side of borax, salicylic acid, or formaldehyde. They were called the Poison Squad, and they were part of a government experiment to figure out whether popular food additives were safe. (Spoiler: Many weren’t.) Food manufacturers weren’t pleased with the findings, but one prominent ketchup maker paid attention. Influenced by these experiments, he transformed ketchup into the all-American condiment that we know and love today. Except ketchup—both the sauce and the word—didn't come from the United States. The story of America’s favorite condiment begins in East Asia. Want more Science Diction? Subscribe on Apple podcasts, or wherever you get your podcasts. Harvey Wiley (back row, third from left) and the members of The Poison Squad. (U.S. Food and Drug Administration) Members of the Poison Squad dining in the basement of the Department of Agriculture. Harvey Wiley occasionally ate with them, to offer encouragement and support. (U.S. Food and Drug Administration)  The members of the Poison Squad came up with their own inspirational slogan, which hung on a sign outside the dining room. (U.S. Food and Drug Administration ) Guest Alan Lee is a freelance linguist and native Hokkien speaker.  Footnotes And Further Reading The Poison Squad by Deborah Blum tells the very entertaining history of Harvey Wiley, the early days of food regulation in the United States, and, of course, the Poison Squad. The Language of Food by Dan Jurafsky is a word nerd’s dream, and contains more on ketchup’s early history. Special thanks to Dan Jurafsky for providing background information on the early history of ketchup for this episode.  Can't get enough ketchup history? Check out Pure Ketchup: A History of America's National Condiment With Recipes by Andrew F. Smith. Learn more about ketchup's early origins in Dan Jurafsky's Slate article on "The Cosmopolitan Condiment."  Credits Science Diction is hosted and produced by Johanna Mayer. Our editor and producer is Elah Feder. We had additional story editing from Nathan Tobey. Our Chief Content Office is Nadja Oertelt. Fact checking by Michelle Harris, with help from Danya AbdelHameid. Daniel Peterschmidt is our composer, and they wrote our version of the “Song of the Poison Squad.” We had research help from Cosmo Bjorkenheim and Attabey Rodríguez Benítez. Sound design and mastering by Chris Wood.
49 min

Three Missions To Mars, COVID Fact Check, Solar Probes. July 24, 2020, Part 1

As the COVID-19 pandemic rages on, your news feed is likely still overflowing with both breaking research and rumors. Virologist Angela Rasmussen of Columbia University joins Ira once again to Fact Check Your Feed, discussing everything from two vaccine trials’ hopeful early results to what antibody production might mean for long-term protection against the COVID-19 virus. They also discuss kids’ response to SARS-CoV-2—a topic of great interest to parents and educators trying to make plans for the coming school year—as well as the confusing terminology around ‘aerosol’ and ‘airborne,’ and research into mutations of the spike protein in one coronavirus variant. Recently, the European Space Agency’s Solar Orbiter satellite sent photos of surprising events on the sun’s surface. Scientists are calling these swirling areas “campfires,” though no one is quite sure what causes them. Joining Ira to talk about these new images is Anik de Groof, instrument operations scientist for the Solar Orbiter, based in Madrid, Spain. They talk about what kind of data the satellite is collecting, how COVID-19 impacted the mission, and what solar mysteries Anik is most excited to learn more about. This month, three different countries are launching missions to Mars—the first for The United Arab Emirates, China is sending an orbiter and a rover, and NASA’s Perseverance will join the Curiosity rover already on the ground. Amy Nordrum from MIT Technology Review talks about the science that each of these missions will be conducting.
47 min

Long-Term COVID Effects, Dicamba and Agriculture, Mosquitoes. July 24, 2020, Part 2

Since the beginning of the pandemic, hospitals have been treating and triaging an influx of COVID-19 patients. Hundreds of thousands of seriously ill patients have been hospitalized, with some having to stay and receive care for months at a time.   But now as some of those patients return home, hospitals are opening post-COVID clinics to help with their transition. Health care professionals are monitoring the recovery process and taking note of persisting health issues from the disease. Mafuzur Rahman, clinician and leader of the post-discharge COVID-19 clinic at SUNY Downstate in Brooklyn, New York, and Margaret Wheeler, a physician at the Richard Fine’s People Clinic at San Francisco General Hospital, talk about the health effects they have seen in their patients and what patients may need for recovery. A federal court in California recently vacated the three popular dicamba herbicides—Xtendimax, Fexipan, and Engenia—after the court determined the EPA violated the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) by registering the chemicals for use. Environmental advocates rejoiced, while farm groups lamented the decision as yet another hurdle for farmers to overcome during a difficult year. More herbicides could face legal challenges in the coming years. But they were once part of a golden era of U.S. agriculture, and a key player in the rise of modern industrialized growing systems. There are over 3,000 mosquitoes, but only a handful feast on blood, like the yellow fever mosquito, Aedes aegypti. Other mammals also have blood running through their veins, but are bit less frequently. So why do mosquitoes love humans so much? New research on these bugs look into the cause, investigating mosquitoes’ preference for certain mammal odors and human population densities. Another paper examines a potential gene solution to decrease mosquito bites—thus lowering transmission of mosquito-borne diseases. Joining Ira to talk about the latest research and more mosquito science is “Lindy” McBride, biology assistant professor at Princeton University and Jake Tu, biochemistry professor at Virginia Tech.
46 min

How Brains Organize Smells, Plant Evolution In Art, New Hearing Aids. July 17, 2020, Part 2

How we smell has been a bit of a mystery to scientists. Other senses are easier to understand: For example, it’s possible to predict what a color will look like based on its wavelength. But predicting what a new molecule will smell like is more difficult. Our sense of smell can be quite complex. Take the delicious smell of morning coffee—that aroma is made up of more than 800 individual molecules. How does our brain keep track of the millions of scents that we sniff? To find out, a group of scientists gave mice different molecules to smell, and tracked what patterns were formed in their brains. Their results were recently published in the journal Nature. Neurobiologist Robert Datta, one of the authors on that study, joins Ira to discuss how our brains make patterns every time we sniff, and how wine aficionados train their noses to decode the different scents in wine. To understand variation in living things, scientists often compare specimens, recording the details. This kind of scientific investigation has long been practiced: Charles Darwin, for example, made sketches of everything from finch beaks to barnacles shells in his field notebooks. Today, natural history museums store these catalogues in shelves and drawers of preserved specimens. But scientists can also draw from less likely forums. Recently, one team of researchers—an art historian and a plant biologist—documented the different plant species represented in historical paintings and sculptures. Their results were published in the journal Trends in Plant Science. Plant biologist Ive de Smet and art historian David Vergauwen discuss what a 17th century painting by Giovanni Stanchi can reveal about watermelon evolution, as well as other trends in strawberries, potatoes, and other plants spotted in works of art. Have you ever met a friend for dinner at a restaurant, only to have trouble hearing each other talk over the din of other diners? And as we get older, this phenomenon only gets worse and can be compounded by age-related hearing loss and conditions like tinnitus. Unfortunately there is no silver bullet for tinnitus or other forms of hearing loss, and researchers don’t even understand all the ways in which the auditory system can go awry. But we now have more sophisticated technology to help us cope with it.  Nowadays, there are over-the-counter hearing aids and assistive listening devices that connect with your smartphone. Certain tech allows you to amplify softer sounds and cancel out the noise of a crowded room—it can even focus on the sound waves created by the person you’re speaking with.  Ira chats with David Owen, New Yorker staff writer and author of the new book Volume Control: Hearing in a Deafening World about the industry that’s helping millions of Americans cope with hearing loss.