Netflix-Style Recommendations for College Classes

Save ArticleSave Article

Failed to save article

Please try again

This article is more than 9 years old.


Online consumers have come to expect recommendations from their favorite shopping websites. Amazon recommends books, movies, and all manner of items you might like. Facebook and LinkedIn recommends people you might know.  Netflix recommends films. These companies all have complex algorithms that assess your tastes based on your purchasing history and your reviews, and with varying degrees of accuracy they're able to gauge what you like.

Now, one school is testing whether the same sort of algorithm can be applied to choosing college courses. Can we look at a student's academic history and determine what subjects he or she will enjoy and do well in?

Students already get advice from staff and faculty advisers as to which classes they should take. But much of that advice is restricted to fulfilling degree requirements, and it's easy to imagine how advisers' own preferences or their lack of knowledge of a students' might skew the recommendations.

The students at Austin Peay State University in Tennessee have a new program that allows them to zero in on their most likely preferred class, in addition to having access to face-to-face advising sessions. Tristan Denley, Austin Peay's provost and a former math professor, has designed a new course recommendation engine for the college. It uses data based on students' majors, class history, grades, as well as other similar student performance to help students decide on courses.

Denley says he's tested outcomes for students who take the software-recommended classes, and he's found their GPAs were half a point higher than those who chose courses not suggested by the program, according to an article in The Chronicle of Higher Education.


There are a number of reasons why students perform better in these courses, according to Denley. Students often sign up for advanced courses that they really aren't prepared for, for example, and end up struggling, failing, or dropping the class. As we've noted here before, dropping classes and dropping out happens all too frequently. Only about 56% of students actually complete their college degrees.

But telling students they'll get better grades in a less difficult class doesn't necessarily sound like great academic advice. Denley says that he doesn't believe that finding classes that are easy A's will be the primary motivation of students using the system. "I hope the major effect will be instead to open students' eyes to courses that they were dimly aware of," he tells The Chronicle of Higher Education.

One junior professor at Austin Peay said he's concerned that the program would push under-performing students towards less challenging classes. What happens to courses like Victorian Poetry or Baroque Architecture or Introduction to Quantum Mechanics?

The program can be used as a tool for decision making in addition to advice from faculty advisers, recommendations from friends and classmates and sites like, where students can write and read anonymous reviews.

It'll be interesting to see if other higher-ed institutions start taking on this data-driven course recommendation. How important is the word of a trusted adviser or a friend's recommendation compared to an algorithm? What's the ramification of using an algorithm to direct a student's academic path? Or, as with most tech tools, can this one serve as a useful compliment to human interaction?