And eventually, scientists hope to use biomarkers in spinal fluid and blood to assess levels of both amyloid and tau in the brain. Those tests promise to be easier for patients, and less expensive to administer.
But even detecting amyloid and tau in the brain won’t be enough, Fillit says. People can have high levels of both and still do pretty well until something else shows up in the brain: inflammation.
“It’s like having the highest sensitivity computer up there and throwing coffee on it,” explains Fillit.
So researchers are working to identify biomarkers for inflammation.
They’re also working on a biomarker that indicates the health of synapses, the connections between brain cells.
Weakening synapses are one of the surest signs of Alzheimer’s, Fillit says. “So we’re funding a clinical trial at a company that is going to use this biomarker as a measure of how well their drug is preserving synapses in the hippocampus of people with Alzheimer’s disease.”
Biomarkers for Alzheimer’s are still a work in progress. For example, they will have to be tested in many different populations.
“What may represent as a biomarker in one population may not actually hold true in another, and we’ve seen this in other diseases,” says the Alzheimer Association’s Carrillo.
Also, biomarkers still don’t offer a reliable way to measure a person’s mental function. They only reveal the brain changes that are associated with loss of memory and difficulty thinking.
Even so, over time the arrival of new markers should make treating Alzheimer’s more like treating other diseases, Carrillo says.
“We treat high cholesterol to reduce the risk of that heart attack,” she says. And someday it may be possible to reduce the risk of dementia by treating high levels of amyloid, tau or inflammation in the brain.
Copyright 2019 NPR. To see more, visit https://www.npr.org.
9(MDAxOTAwOTE4MDEyMTkxMDAzNjczZDljZA004))